Multi-Straw Prototype Detector Tension Measurements

Oswaldo A. Lozoya University of Texas at El Paso

Straw Chamber

The Straw Chamber is a detector whose wires pass through single straws, connected to a high voltage source. Inside the straw, two incoming wires are joined by a non-conductive glass fiber bead.

Straw Chamber cont'd

- Straw (cathode): Kapton Al Kapton (LR) layers; 4 mm diameter
- Wire (anode): Au-coated, 25-µm W wire

Straw Chamber vs. Wire Chamber

- Straw chamber has been chosen for the BTeV project for one main reason: functionality
 - Broken wires

Straw Prototypes

- Two kinds: Single and Multi-Straw
- Certain tension in the wires is required for the detector to operate properly
- Prototypes have a single continuous wire, e.g. no glass fiber bead
- Resonant frequency ∞ Tension

How to make a prototype

How to make a prototype cont'd

Theory

- In a vibrational approach, the wire represents a continuous system (many DOF's)
- Due to its characteristics (tensioned and fixed), max amplitude ∞ max power occurs at harmonic frequencies
 - Wave interference and superposition
 - Nodes and antinodes

Theory cont'd

Governing equation:

$$f = \frac{n}{2L} \sqrt{\frac{T}{\mu}} \qquad n = 1, 2, 3...$$

$$n = 1, 2, 3...$$

```
f = harmonic frequency (Hz)
T = tension(N)
                                n = harmonic (1<sup>st</sup>,
  2<sup>nd</sup>...)
L = length of wire (m)
\mu = linear density of wire (kg/m)
```

Tension tests

- Function Generator(*FG*)
 - An AC current is induced in the wire, located in a magnetic field
 - When the wire is driven to resonance, the effect is perceived in an oscilloscope
 - Current flow induction necessary (not possible in real detector due to wire discontinuity and bead insulation)

- Tone Generator (*TG*)
 - The wire is connected to a constant potential source
 - The straw-wire system resembles a cylindrical coaxial capacitor; Q=CV
 - The wire is vibrated with a loudspeaker, and the power output is read and displayed in a computer (LabVIEW VI) for different frequencies
 - No current needs to be induced; capacitance changes suffice

Tension tests cont'd

Function Generator (FG)

Tone Generator (TG)

TG Hardware / Software

- Hardware
 - MSP / SSP
 - Voltage source (~81V)
 - Amplifier
 - Loud Speaker
 - AC signal circuit
 - Oscilloscope
 - Tektronix TDS 350
 - Two channel, 200
 MHz, 1 Gs/s

- Software
 - Tone Gen 1.1 (LabVIEW)
 - Generates tone
 - Plots Power as function of frequency
 - Resonance = MaxPower

TG Hardware

TG Software: VI Panel

TG Software: VI Diagram

TG Setup

TG Setup cont'd

Experiments

- TG vs. FG
 - Evaluate the difference betweenFG and TG readings
 - 34 samples
 - MSP used for such purpose
 - Different tensions mean different frequencies

- TG accuracy
 - Evaluate how consistent and accurate is TG
 - 20 samples
 - SSP used in the study
 - Expected frequency known (approx. 250 Hz)

Results: TG vs. FG

- Mean = 1.80 Hz
- Std. Dev. = 1.23
- Graph tends slightly more to a small difference, as shown
- Good news: both of them can be trusted in prototypes if they are right
- Fact: only TG can be used in real detectors!!

Results: TG accuracy

- Mean = 250.66 Hz
- Expected ≈ 250 Hz
- Std. Dev. = 0.42
- Good news: TG is working right!!
 - TG is potentially useful for real detector

Conclusion

- TG is a trustworthy device for wire tension measurement, that can be used in the detector and prototypes
- The process has been speeded up, but must be faster if possible for real detector (80,000+ wires)